
echniques

1. Data types and functions

The following chart shows the data types supported by both CUDA and C++ AMP (see
Table 1.)

CUDA and C++ AMP comparison

AMC Bridge LLC 10 Lake Shore Drive S.
Randolph, NJ 07869

www.amcbridge.com
contact@amcbridge.com

Phone: 973-895-1724
Fax: 973-895-5376

1

Microsoft announced new technology for GPGPU called C++ Accelerated Massive
Parallelism - C++ AMP (http://blogs.msdn.com/b/nativeconcurrency/archive/
2011/09/13/c-amp-in-a-nutshell.aspx).

It accelerates the execution of C++ code by taking advantage of the GPUs present on
video cards with DirectX11 support. The main structure of C++ AMP is influenced by its
main competitors like OpenCL and CUDA. But unlike OpenCL and CUDA, that are more
oriented in C code, C++ AMP looks like STL library with new C++11 support. It is
available in Visual Studio 2011 Beta and become a part of the existing concurrency
namespace (Parallel Patterns Library –PPL and its Concurrency Runtime – ConcRT).

This paper assumes that readers have some experience with GPGPU programming.
First, we will compare basic primitive data types and restrictions of both technologies.
Then we will present the results of the GPU performance analysis in application to
handling specific algorithms of the Point Cloud Library (PCL). (More on PCL at
pointcloud.org)

In addition to the basic data types C++ AMP has a library of mathematical functions
that resides in two namespaces precise_math and fast_math. The chart below
compares the capabilities of CUDA and C++ AMP in regards to the usage of the
mathematical function:

Parallel c techniques

Every problem that can be parallelized on GPU always passes following phases:

1. Transferring data from CPU to GPU.
2. Calling kernel for each thread.
3. Transferring data from GPU to CPU.

2

CUDA and C++ AMP comparison AMC Bridge LLC

2. Tasks and syntax

AMC Bridge LLC 10 Lake Shore Drive S.
Randolph, NJ 07869

www.amcbridge.com
contact@amcbridge.com

Phone: 973-895-1724
Fax: 973-895-5376

2

The items 2 and 3 (see Table 2) are not critical, since C++ AMP has own wrappers
(array, array_view) around user data, so there is no need in pointer to pointer
declarations.

The table below shows a few basic operations to perform GPGPU computations using
CUDA and C++ AMP.

Parallel c techniques

3. Performance comparison

Test environment

GeForce GT 520, Asus P5KPL-VM, Intel Core2 Duo E6550 @ 2.33, 4 GB DDR2-800
@400 MHz, Windows 7 Professional 64-bit OS

CUDA and C++ AMP comparison

Phone: 973-895-1724
Fax: 973-895-5376

3

 AMC Bridge LLC

AMC Bridge LLC 10 Lake Shore Drive S.
Randolph, NJ 07869

www.amcbridge.com
contact@amcbridge.com

Phone: 973-895-1724
Fax: 973-895-5376

3

To compare the syntax let’s write simple program for vector sum computation.

Both languages extend C++ with special keywords. For CUDA the syntax is “<<< >>>”
and AMP C++ is using the keyword restrict(amp). It is obvious that code written on
AMP C++ is less cluttered and hence easier to read than on CUDA. Moreover, AMP C++
can be easily integrated with STL. But how fast is it?

To compare performance between CUDA and C++ AMP we are going to use PCL, which
has already some parts parallelized using CUDA technology. We selected the
algorithm that is particularly heavy on the floating-point computation. As input, the
algorithm takes point cloud data and returns triangle normals as the output. Existing
implementation on CUDA can be found at PCL\gpu\cuda\features directory.

Parallel c techniques

Results

Copying to GPU:

Calling kernel:

Copying to CPU:

CUDA and C++ AMP comparison AMC Bridge LLC

4. Conclusions

AMC Bridge LLC 10 Lake Shore Drive S.
Randolph, NJ 07869

www.amcbridge.com
contact@amcbridge.com

Phone: 973-895-1724
Fax: 973-895-5376

4

The following are the time measurements for the phases described in table 3.

In order to get maximum performance using GPU, developers need to understand how
the task can be mapped into GPUs and how to program using API. C++ AMP is relatively
new technology, which is built around DirectX11 DirectCompute and has some
performance lags compare to 5-years old CUDA technology. We hope that the
performance issues will be resolved with Visual Studio 11 RTM. As for the syntax,
Microsoft did a great job on C++ extension by introducing STL like classes and STL
integration, and only one additional keyword - restrict(amp). Developers can easily
rewrite existing code to improve performance of the execution of their algorithms.

CUDA and C++ AMP comparison AMC Bridge LLC

5. References

AMC Bridge LLC 10 Lake Shore Drive S.
Randolph, NJ 07869

www.amcbridge.com
contact@amcbridge.com

Phone: 973-895-1724
Fax: 973-895-5376

5

1) Wong, H., M. Papadopoulou, et al. (2010). Demystifying GPU microarchitecture
through microbenchmarking. IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2010, IEEE.
2) Microsoft, “C++ AMP: language and Programming Model”

